
Activity Graphs



An activity-node graph has nodes that represent 
activities and the time they take to complete.  An 
edge such as

X t1 Y t2

indicates that X must be completed before Y begins.  
X takes time t1 and Y takes time t2.  Here is a typical 
activity graph: 
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Clicker Q: Here is the kind of information we'd like 
to get from this graph: If the nodes on this activity 
graph represent the parts of a project, how long 
will it take to complete the project?

A. 6  
B. 8
C. 10
D. 21 (the sum of all the times)
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Anothre Clicker Q: If we start both A and B at time 
0, what is the earliest time we could complete D?

A. 2
B. 3
C. 4
D. 5
E. 7
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One more: Suppose part D takes time 3 instead of 
time 2.  Will that delay the completion time of 
part F?

A. No
B. Yes

We will  find algorithms that answer questions 
like this.



We don't have any algorithms for exploring graphs 
where the costs are in the nodes themselves, so we 
turn this into an event-node graph in which the nodes 
represent the completion of an event and the edges 
represent the time the event takes.

Here is an algorithm for the conversion:
A. If Y has only one incoming edge in the event 

graph:

X t1 Y t2

replace this edge by one with cost t2 in the event graph:

X Y
t2



B. If Y has multiple incoming edges in the activity graph, 

X1 t1

X2 t2

X3 t3

Y t

make the corresponding edges in the event graph have cost 
0, split Y into 2 nodes Y and Y', and make the edge from Y to 
Y' have weight t

X1

X2

X3

Y Y'

0

0

0

t



With these rules our activity graph becomes an 
event graph: 
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The longest path from start to finish gives the earliest 
possible completion time of the project.  We can easily 
modify our shortest-path algorithm to give the longest 
path in the case of an acyclic graph -- just reverse the 
inequalities.
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The Earliest Completion of each node is shown on the 
graph in green.



If we start at the finish node and do a reverse-topological 
ordering, we can also compute the Latest Completion 
time for each node, which is the last time the node can 
be completed without delaying the project's overall 
completion time.  The LC and EC times for the finish node 
a are the same.  For other nodes, if we have

X Y
t

then X.LC = Y.LC - t

If we have
Y1

Y2

Y3

X

t1
t2

t3

then X.LC = min{Y1.LC-t1, Y2.LC-t2, Y3.LC-t3}
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Here is our event graph with the LC times written in red:
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For any node the difference between the earliest time it 
can be completed and the latest time it must be 
completed by to avoid delaying the project is called that 
activity's slack time:

Slack = LC - EC
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On the longest path through the graph, EC = LC at every 
node, so the slack time is 0.  This is called the critical 
path for the graph.  Any delay on the critical path delays 
the whole project.  Much project planning goes into 
ensuring that activities on the critical path stay on 
schedule.

The critical path is shown in red.


